28 research outputs found

    Meshless electrophysiological modeling of cardiac resynchronization therapy—benchmark analysis with finite-element methods in experimental data

    Get PDF
    Computational models of cardiac electrophysiology are promising tools for reducing the rates of non-response patients suitable for cardiac resynchronization therapy (CRT) by optimizing electrode placement. The majority of computational models in the literature are mesh-based, primarily using the finite element method (FEM). The generation of patient-specific cardiac meshes has traditionally been a tedious task requiring manual intervention and hindering the modeling of a large number of cases. Meshless models can be a valid alternative due to their mesh quality independence. The organization of challenges such as the CRT-EPiggy19, providing unique experimental data as open access, enables benchmarking analysis of different cardiac computational modeling solutions with quantitative metrics. We present a benchmark analysis of a meshless-based method with finite-element methods for the prediction of cardiac electrical patterns in CRT, based on a subset of the CRT-EPiggy19 dataset. A data assimilation strategy was designed to personalize the most relevant parameters of the electrophysiological simulations and identify the optimal CRT lead configuration. The simulation results obtained with the meshless model were equivalent to FEM, with the most relevant aspect for accurate CRT predictions being the parameter personalization strategy (e.g., regional conduction velocity distribution, including the Purkinje system and CRT lead distribution). © 2022 by the authors. Licensee MDPI, Basel, Switzerland

    Fully Automated Electrophysiological Model Personalisation Framework from CT Imaging

    Get PDF
    International audienceThere has been a recent growing interest for cardiac computed tomography (CT) imaging in the electrophysiological community. This imaging modality indeed allows to locate and assess post-infarct scar heterogeneity, allowing to predict zones of abnormal electrical activity and even personalise EP models. To this end, most of the literature uses manually segmented CT images where one fundamental information is extracted, the myocardial wall thickness. In this paper, we evaluate the impact of using an automated deep learning (DL) methodology to segment the left ventricular wall and extract relevant scar information on the resulting personalised models. Using CT images from 8 patients that were not used during the DL training, we show that the automated segmentation is very similar to the manual one (median Dice score: 0.9). Thickness information obtained this way is also very close to the manual one (median difference: 0.7 mm). A wavefront propagation model personalisation framework based on this thickness information does not show relevant differences in its output (median difference in local activation time: 2 ms), proving its robustness. Bipolar electrograms, simulated through a novel approach, do not differ significantly between manual and automated segmentations (Pearson's r: 0.99)

    Chaste: an open source C++ library for computational physiology and biology

    Get PDF
    Chaste - Cancer, Heart And Soft Tissue Environment - is an open source C++ library for the computational simulation of mathematical models developed for physiology and biology. Code development has been driven by two initial applications: cardiac electrophysiology and cancer development. A large number of cardiac electrophysiology studies have been enabled and performed, including high performance computational investigations of defibrillation on realistic human cardiac geometries. New models for the initiation and growth of tumours have been developed. In particular, cell-based simulations have provided novel insight into the role of stem cells in the colorectal crypt. Chaste is constantly evolving and is now being applied to a far wider range of problems. The code provides modules for handling common scientific computing components, such as meshes and solvers for ordinary and partial differential equations (ODEs/PDEs). Re-use of these components avoids the need for researchers to "re-invent the wheel" with each new project, accelerating the rate of progress in new applications. Chaste is developed using industrially-derived techniques, in particular test-driven development, to ensure code quality, re-use and reliability. In this article we provide examples that illustrate the types of problems Chaste can be used to solve, which can be run on a desktop computer. We highlight some scientific studies that have used or are using Chaste, and the insights they have provided. The source code, both for specific releases and the development version, is available to download under an open source Berkeley Software Distribution (BSD) licence at http://www.cs.ox.ac.uk/chaste, together with details of a mailing list and links to documentation and tutorials

    SUBALTERNATIVE ALGEBRAS

    No full text
    Abstract. An algebra is called subalternative if the associator of any three linearly dependent elements is their linear combination. We prove that in characteristic 6 = 2�3anysuchalgebra is Maltsev{admissible and can be identi ed with ahyperplan in certain unital alternative algebra. 1

    Limits of emission quantum yield determination

    No full text

    Effect of the measurement errors on two one-sided Shewhart control charts for monitoring the ratio of two normal variables

    No full text
    International audienceMonitoring the ratio between two random normal variables plays an important role in many industrial manufacturing processes. In this paper , we suggest designing two one-sided Shewhart control charts monitoring this ratio. The numerical results show that the one-sided charts have more advantages compared to the two-sided Shewhart chart proposed previously in the literature. Moreover, we investigate the effect of measurement error on the performance of these control charts where the measurement error is supposed to follow a linear covariate error model. The change of model parameters from an in-control condition to an out-of-control is presented without using a strict assumption about the independence of the shift size from measurement errors. A valuable finding from this study is that taking multiple measurements per item is not an effective way to reduce the negative effect of measurement error on the Shewhart charts' performance
    corecore